

Note

New method for the synthesis of 1,3,5-triarylbenzenes

Xiaobi Jing^{a*}, Feng Xu^a, Qihua Zhu^a, Xinfeng Ren^b
Dong Li^a, Chaoguo Yan^b & Yaocheng Shi^a

^a College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China

^b College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 200065, P. R. China

Received 13 September 2005; revised accepted 6 October 2006

Adsorbed on clayfen together with *p*-toluenesulfonic acid and catalytic amount of tin tetrachloride anhydrous (5%), aryl ketones are readily turned to 1,3,5-triarylbenzenes in good yields upon exposure to microwaves under solvent-free conditions. A new method for the synthesis of poly substituted benzene is developed, which is simple and rapid.

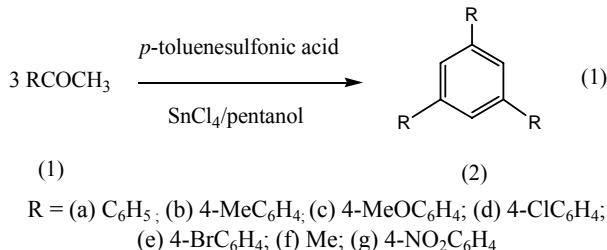
Keywords: 1,3,5-triarylbenzenes, *p*-toluenesulfonic acid, tin tetrachloride anhydrous, clayfen

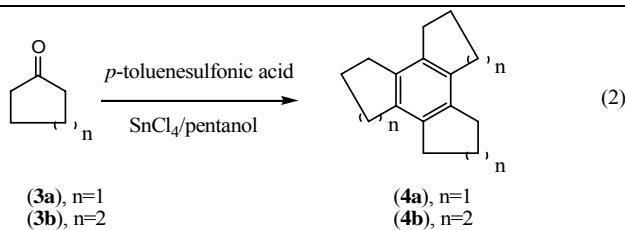
IPC Code: Int.Cl.⁸ C07D

Triaryl benzenes are a class of important compounds in the electrode and electroluminescent devices. A simple method yielding these compounds involves the triple condensation of aryl methyl ketones **1**, as in Equation (1). The reported methods of inducing condensation involve primarily one of three catalysts: sulfuric acid and sodium pyrosulfate mixture, hydrogen chloride and/or hydrochloric acid, or aniline and aniline hydrochloride¹⁻³. In isolated cases other catalysts were used, such as beryllium chloride, sodium ethoxide, and sulfoacetic acid⁴⁻⁶. Recently, lots of catalysts, such as thionyl chloride, silicon tetrachloride, copper chloride, titanium tetrachloride and so on, were reported in this field⁷. It will be noted

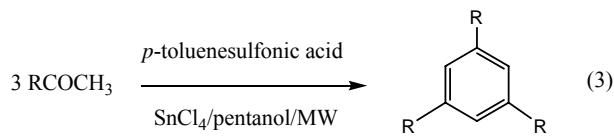
that the most satisfactory results were obtained using an acidic catalyst. They are both inconvenient and unsuitable for the synthesis of all but the simplest compounds.

Results and Discussion


A more efficient and more general method was employed to convert **1** into **2**, and the interaction of compounds **1a-e** with one equivalent of *p*-toluenesulfonic acid and catalytic amount of tin tetrachloride, anhydrous(5%) in 1-pentanol at reflux temperature gave different yields of **2a-e**. The results are given in **Table I**.


Clearly, *p*-TsOH/SnCl₄ is a potent reagent for the triple condensation of ketones to yield benzenoids. The precise nature of the reagents responsible for the condensation is not known.

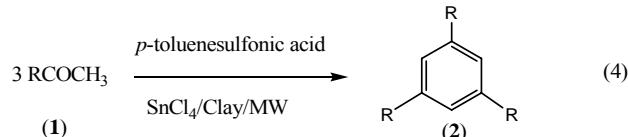
Further investigations of scope and pathway of this reaction will be reported separately.


Table I — Yield of triarylbenzenes from aryl methyl ketones

Entry	t (hr)	T (°C)	Yield of 2 (%)	m.p. (°C)		
					(1)	(2)
1a	4	110	82	172		
1b	4	110	85	179-180		
1c	5.5	110	77	143		
1d	7	120	72	246		
1e	7	120	74	263		
1f	3	40	66	-		
1g	24	150	<30	153		

Table II — Yield of triarylbenzenes from aryl methyl ketones under microwave-induced condition

(1)	(2)
$R = (a) C_6H_5; (b) 4\text{-MeC}_6H_4; (c) 4\text{-MeOC}_6H_4; (d) 4\text{-ClC}_6H_4;$ $(e) 4\text{-BrC}_6H_4; (f) \text{-Me}; (g) 4\text{-NO}_2C_6H_4$	


Entry	t (min) ^a	Power (W)	Yield of 2 (%)	m.p. (°C)
3a	3 × 1	400	86	172
3b	3 × 1	400	84	179-180
3c	3 × 1	400	88	143
3d	3 × 1.5	400	80	246
3e	3 × 1.5	400	85	263
3f	3 × 0.5	300	73	-
3g	3 × 3	400	55	153

^aNumber of irradiations for a given time; 2 × 3 indicates 2 irradiations of 3 min duration each.

The reactions of cyclohexanone and cyclopentanone was examined (Eqn. 2). In this case, gave the desired triannulated benzene **4** and in yield of 79 and 77% respectively.

In order to improve the yield of the triarylbenzenes, the reaction was carried out under microwave-induced

Table III —Yield of triarylbenzenes from aryl methyl ketones under solvent-free conditions

R = (a) C₆H₅; (b) 4-MeC₆H₄; (c) 4-MeOC₆H₄; (d) 4-ClC₆H₄;
 (e) 4-BrC₆H₄; (f) -Me; (g) 4-NO₂C₆H₄

Entry	t (min) ^a	Power (W)	Yield of 2 (%)	m.p. (°C)
4a	3 × 2	400	91	172
4b	3 × 2	400	88	179-180
4c	3 × 2	400	90	143
4d	3 × 3	400	85	246
4e	3 × 3	400	85	263
4f	3 × 1.5	300	69	-
4g	3 × 3	400	60	153

Table IV — The analytical data for the compounds **2a-g^b** and **4a-b^c**

Compd	¹ H NMR	MS	¹³ C NMR (100M)	m.p. (°C)
2a	7.81(3H, s), 7.72(6H, m), 7.50(6H, m), 7.41(3H, m)	306(M ⁺); 289; 232; 154; 136	142.4, 141.2, 128.8, 127.5, 127.4, 125.2	172
2b	7.13(3H, s), 7.59(6H, m), 7.27(6H, m), 2.42(9H, s)		142.2, 138.4, 137.2, 129.5, 127.2, 124.6, 21.1	179-180
2c	7.73(3H, s), 7.59(6H, d, <i>J</i> =7.8), 7.29(6H, d, <i>J</i> =7.8), 2.42(9H, s)		160.9, 137.6, 128.9, 128.4, 125.2, 114.6, 56.0	143
2d	7.70(3H, s), 7.60(6H, d, <i>J</i> =8.4), 7.46(6H, d, <i>J</i> =8.4)		141.8, 139.2, 134.0, 129.1, 128.5, 125.0	246
2e	7.66(3H, s), 7.49(6H, d, <i>J</i> =8.4), 7.37(6H, d, <i>J</i> =8.4)		137.6, 135.6, 132.3, 129.6, 125.2, 122.0	263
2g	8.25(6H, d, <i>J</i> =8.5), 7.66(3H, s), 7.74(6H, d, <i>J</i> =8.5)		147.3, 142.7, 137.6, 128.3, 125.2, 124.1	153
4a	2.80(12H, m), 1.90(6H, m)		137.3, 27.2, 24.7	92
4b	2.57(12H, m), 1.77(12H, m)	240(M ⁺); 225; 212; 199; 183	132.6, 26.8, 23.1	236

^btrimethylbenzene **2f** is easily detected by TLC.

^cAll the spectra data are in good agreement with those of literature report¹.

condition instead of refluxing. The results are given in **Table II**.

The reactions were detected under the conditions of solid states. To an equimolar mixture of ketones, *p*-toluenesulfinic acid and catalytic amount of tin tetrachloride anhydrous(5%) placed in an open glass container, montmorillonite K 10 Clay is added and the reaction mixture is irradiated in a microwave oven. The results are given in **Table III**.

Clearly, the use of a microwave oven in solid state is convenient when compared to other experimental conditions and proceeds efficiently in a shorter period of time and higher yields. In conclusion, the $\text{SnCl}_4/\text{p-TsOH}$ /pentanol condition we found is effective enough to catalyze the triple condensation of not only aryl methyl ketones but also cyclohexanone. Microwave-induced version of the condensation reaction is more convenient due to the short reaction time and better yields of the products. The further elaboration of *in situ* generated triarylbenzenes into useful products in one-pot procedures using microwave irradiation is currently being investigated.

All the analytical data for the compound **2a-g** and compound **4a-b** are given in **Table IV**.

Experimental Section

Melting points were measured on a Kofler apparatus and were uncorrected. MS were performed on ZAB-HS spectrometer. ^1H NMR and ^{13}C NMR spectra were recorded on a Bruker AM-600 and AM-400 instruments. Chemical shifts are referred to TMS on the ‘ δ ’ scale.

The *p*-toluenesulfinic acid (1.72 g, 10 mmoles) was added to a stirred solution of **1c** (1.50 g, 10 mmoles) in dry 1-pentanol (10 mL). Then the catalytic amount of tin tetrachloride anhydrous (5%) was added slowly by a syringe to the above mixture. The mixture was

stirred for 5.5 hr at 110°C, then the solution was poured into ethanol (20 mL), stirred, filtered. Crystallization from EtOH and CH_2Cl_2 (1:1) gave **2c** (1.15 g), m.p. 143 °C, yield 72%.

Acknowledgement

This research was supported by the National Natural Science Foundation of China (20572091) and Cultivation and Construction Fund for the State Key Subject of Physical Chemistry.

References

- 1 (a) Bernhauer K, *J Prakt Chem*, 145, **1936**, 301.
(b) Odell A F & Hines C W, *J Am Chem Soc* 35, **1913**, 81.
(c) Feave R J & Le W, *J Chem Soc*, **1938**, 1467.
(d) Sampey J R, *J Am Chem Soc*, 62, **1940**, 1953.
(e) Davis T & Armstrong C, *ibid*, 57, **1935**, 1583.
(f) Weber E, Hecker M & Koepp E, *J Chem Soc Perkin Trans II*, **1988**, 1251.
- 2 Skrowaczewska Z & Sucharda E, *Roczniki Chem*, 16, **1936**, 151.
- 3 Clapp D & Morton A, *J Am Chem Soc*, 58, **1936**, 2172.
- 4 Bredeteck H, *Ber*, 72B, **1939**, 1414.
- 5 Gastaldi C & Cerchi F, *Gass Chim Ital*, 45(II), **1915**, 251.
- 6 Schneider W & Seebach F, *Ber*, 54B, **1921**, 2298.
- 7 (a) Elmorsy S S, Pelter A & Smith K, *Tetrahedron Letters*, 32(33), **1991**, 4175.
(b) Cheng K J, Z B Ding & Wu S H, *Synth Comm*, 27(1), **1997**, 11.
(c) Cao X Y, Liu X H & Zhou X H, *J Org Chem*, 69(18), **2004**, 6050.
(d) Hu Z G, Liu J & Dong Z B, *Huaxue Tongbao*, 67(9), **2004**, 700.